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The study presents a force theory for incompressible flow about several solid bodies,
which enables us to examine the force contribution to each body from individual fluid
elements. By employing auxiliary potential functions, we decompose hydrodynamic
forces in terms of the unsteadiness of the incoming stream, vorticity within the flow,
and surface vorticity on the solid bodies. The usefulness of this force decomposition
is illustrated by examining separated flow about several circular cylinders. Guidelines
were obtained for finding an optimal arrangement to achieve significantly small drag
exerted on the cylinders.

1. Introduction

It has always been of interest to see how forces exerted on a body for flow in nature
(such as bird flight) or in engineering (such as flow about an aircraft) are related to
the structures of the flow (see e.g. Lighthill 1986a). In view of advances in numerical
and measurement techniques, a theory that helps to clarify the relationship between
the force and the various flow structures is useful and necessary as a large part of
the flow or the entire flow field can be measured or computed. For example, if we
consider a flow about a circular cylinder or sphere, the fluid meets a buffer layer
in front of the body, develops a boundary layer when flowing along its shoulder,
and may separate further downstream, evolving into a pair of wake vortices. Can we
tell in quantity how the individual flow structures, or more precisely fluid elements,
contribute to the drag exerted on the cylinder or sphere?

In the literature, there are several useful force theories which shed light on different
aspects of hydrodynamic or aerodynamic forces. Circulation theory is the early
attempt at predicting the lift (see e.g. Howarth 1935; Sears 1956, 1976). These
authors provided insightful relationships between forces and inviscid models in
terms of boundary-layer separation, vortex shedding and conservation of circulation.
Subsequent studies are meant to provide exact means or theories for hydrodynamic
forces through a rigorous analysis of the equation for viscous flow; see e.g. Phillips
(1956), Payne (1958), Wu (1981), Quartapelle & Napolitano (1983), and in particular,
Howe and colleagues (1989a, b, 1991, 1995, 2001), Kambe (1986) as well as Wells
(1996) for inviscid and viscous flow. On the other hand, Lighthill (1986b) developed
the ideas which validate a separation of hydrodynamic loadings into potential flow
forces and vortex-flow forces. The applied force was deliberately explained as the rate
of change of a momentum, defined by an absolutely convergent integral.
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Some time ago, we proposed a diagnostic force theory to distinguish the contribution
of individual fluid elements to hydrodynamic forces (Chang 1992). The theory starts
from the D’Alembert theorem stating that the incompressible potential flow predicts
no force exerted on a body if the incident flow is a constant uniform stream.
Incompressible potential flow means that there is no single fluid element possessing
non-zero vorticity or dilation. It is therefore considered that in more realistic flow,
any fluid element with non-zero vorticity or dilation may be considered as a source
of the hydrodynamic force. Based on this observation, we proposed to decompose the
force in any given direction to consist of three components: (i) the potential force due
to the body motion or the accelerating incident stream; (ii) the force due to vorticity
strictly within the flow regime; (iii) the force due to the surface vorticity which can
further be divided to two parts: one is the frictional force and the other called the
friction-like force. Each of (ii) and (iii) is written in the form of an integral in which the
integrands are appropriately called the volume and surface force elements, respectively.
The volume element is rapidly decaying away from the body, and accounts for most
of the force contribution for largely separated flow. The viewpoint has been applied
to examine the definition of starting vortex (Chang, Hsiau & Chu 1993), the effect
of suction for flow control (Chu et al. 1996), and extended to compressible flow to
examine force contributions by various structures in the flow (Chang & Lei 1996a, b;
Chang, Su & Lei 1998). Here, the force decomposition is extended to be applicable to
flow about many bodies with applications to separated flow about bluff bodies. Similar
formulae were derived by Ragazzo & Tabak (2007), but with different applications.
In particular, we consider flow about several circular cylinders, and illustrate how the
force decomposition can help to find the configuration of the cylinders to achieve
significantly small total drag on the cylinder system.

2. Auxiliary potential

Let us first determine the nature of potential solution. The potential ¢ satisfies
V2¢ =0, and is required to vanish at infinity. The general solution at great distances
r from the bodies in three dimensions is given by

1 A-
¢:(A.V);+...:_7n+...‘ (2.1)

On the other hand, the potential solution at great distances r in two dimensions is
given by
A-n

¢:—(A'V)logr+-~~:——r 4+ (2.2)
In both (2.1) and (2.2), the vector A depends on the specific geometry and the
motion of the solid bodies and is independent of the coordinates. The exact A
requires a complete solution of the equation V?¢ =0 (cf. Landau & Lifshitz 1987)
and appropriate boundary conditions. The corresponding velocity V¢ decays as 1/r°
in three dimensions, and 1/r? in two dimensions.

3. The force theory for N solid bodies

Consider flow past N solid bodies. The flow past a collection of solid bodies in
a uniform stream is assumed to be governed by the Navier—Stokes and continuity
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equations, which are given in dimensionless form,

ov 2
M 4+ (v-Vv)=-VP + EAU’ (3.1)

Vev=0, (3.2)

where v denotes the velocity and P the pressure, and Re =2pUa/u is the Reynolds
number with p the density and wu the viscosity, U the characteristic velocity and a
the characteristic length. The dimensional velocity v, time ¢* and pressure P* are
related to their dimensionless counterparts by v =Uwv, t*=at/U and P*=pU?P.
Also, the drag coefficient is defined by Cp = D*/pU?a, and D* is the drag. Let us
now determine how fluid elements contribute to the drag force on the solid body.
The uniform incident velocity is ¢(¢) =c(t)i, The potential ¢ in the preceding section
is required to satisfy V¢ -n= —i-n on the ith body, and V¢ -n=0 on other body
surfaces, where n is the normal vector pointing inward from the bodies. Let Vi be the
volume of fluid enclosed by S, which consists of the body surfaces S;,i=1,..., N,
and a spherical surface Sz of large radius R. Taking inner products with V¢ on both
sides of (3.1), and integrating over the entire flow region yields

2
/ Pn-V¢pdA = ¢8v-ndA—/ vXw-VopdV 4+ — nXxXw-VpdA.
S;USk sy Ot Vi Re Jg,  usy (33)

Applying the uniform stream condition in the far field and the boundary conditions
on the solid body surfaces, we can carry out the integral on the left-hand side and
the first one on the right-hand side with R — oo to obtain

2

/P(i-n)dA=4Tt(A-é)—/vxw-V¢dV+ nXxw-VodA, (3.4)
s v Re Js,. sy

where V denotes the entire flow region, A is the vector associated with the potential

¢ and w is the vorticity. If the frictional force is also included, we have the drag

coefficient on the ith body:

CD=4TE(A-é)—/v><w-V¢>dV+2</ nxw-VquA—{—/nxw-idA).
Sy..USy

\4 Re S:
(3.5)
In brief, we write Cp = Cp, + Cp, + Cp,. The expression shows that the drag consists
of the three contributions: the inertial force due to accelerating distant fluid, the force
due to the vorticity within the flow, and the force due to surface vorticity. In (3.5), the
integrand —v X w- V¢ is called the volume drag element, and 2n X w - V¢ /Re is called
the friction-like force (Chang 1992). Either of them may be termed the vortex force
elements. A salient feature is: only the volume drag elements near the solid bodies
contribute significantly to the drag force because V¢ is rapidly decaying away from
the body. Also the potential function ¢ can be considered as the geometric factor of
the configuration, for each flow condition for a fixed configuration can be associated
with a unique ¢.
If we consider the force in other directions, say j, normal to i, then ¢ has to satisfy
V¢-n= — j-n on the ith body surface; V¢ - n =0 on other body surfaces. The force
along the j-direction is given by

Cjz—/vxa)'V¢dV+2(/ nxw-VquA—I—/nxa)'jdA). (3.6)
v Re \ /s, .usy Si
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FIGURE 1. Various drag components for flow over two cylinders arranged in tandem where
Cpo is the drag coefficient of a single cylinder.

Now if we consider the drag force on a subset of K bodies, we need an auxiliary
potential ¢ that satisfies Vp-n= —i-n on S;U---USg and V¢ -n =0 on other body
surfaces. Then the drag force on the K bodies is

CD(I,...,K)=4n(A-é)—/v X w-VodV

\4

+2</ nxa)-V¢>dA+/ nxa)'idA>. (3.7)
Re S1..USy S1..USk

Similar formulae to (3.7) have also been derived by Ragazzo & Tabak (2007).

4. Results and discussion

The present force theory will be illustrated for flow about several circular cylinders
with particular emphasis on the effects of the drag elements. The complexity is
increased on increasing the number of cylinders. Here, the numerical results are
obtained by using the deterministic vortex method (Chang & Chern 1991) as well as
the SIMPLE method of the commercial code FLUENT.

Two cylinders

Consider an impulsively started flow over two circular cylinders of diameter D = 2a
arranged in tandem. There have been several studies on a wide range of flow
conditions (Zdravkovich 1977; Kiya et al. 1993), but the present analysis sheds
further light from a completely different viewpoint. Figure 1 shows the various force
components of the drag exerted on the two cylinders at Re =1000. Initially, the
two cylinders have little mutual interaction. The drag coefficient Cp(1) for the front
cylinder drops quickly, then rises to achieve a maximum at r = 1.5, and then maintains
a steady value at 0.82 from r =2. A further look at the drag Cp(1) decomposed into
the component Cp,(1) due to volume vorticity and Cp,(1) due to surface vorticity,
shows that Cp,(1) starts from a small negative value and rises to a fairly stationary
value 0.58 (on average), while Cp,(1) drops from a large value very quickly to 0.17.
The drag coefficient Cp(2) of the rear cylinder behaves similarly to Cp(1) initially,
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FIGURE 2. Flow field for two cylinders in tandem arrangement at r =36, (a) vorticity
contours, (b) volume drag elements for S1 and (c¢) volume drag elements for S2.

but decreases dramatically during the time period from ¢ =1.5 to become —0.46 (on
average) after time r =6. A further look at the drag Cp(2) decomposed to volume
drag Cp,(2) and surface drag Cp,(2), shows that Cp,(2) is almost identical to Cp(2)
after a short initial period, while Cp,(2) drops gradually in an initial period and
becomes negligible after r = 6.

How do these behaviours relate directly to the flow structures in the flow? Let us
sample the time instant r =36, and investigate the vorticity distribution as well as the
volume drag elements with respect to each cylinder (figure 2). The boundary layer in
front of the front cylinder is always a source of negative drag elements. A very stable
wake is observed to exist behind the front cylinder, and the zone of recirculation
also provides negative drag elements to the front cylinder. At this instant, the shear
layers originating from the front cylinder have extended to cover the shoulders of the
rear cylinder, while the vortices behind the rear cylinder have shed in an alternating
manner. It is significant to see that the wake behind the rear cylinder has a very small
contribution to the front cylinder, but the shear layers originating from the front
cylinder provide intense and negative volume drag elements to the rear cylinder. It is
these negative elements that cause a negative value of the drag on the rear cylinder.
As a result of the mutual interaction, the total drag coefficient Cp for the two-cylinder
system has the average value 0.52 after an initial stage, which is significantly less than
the time-averaged drag coefficient (about 1.52) for a single cylinder by 65.8%. From
a systematic study of flow over two circular cylinders, we observed three important
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FIGURE 3. Various drag components for flow over three circular cylinders with a larger one
in front and two smaller cylinders in the rear.

guidelines for achieving significantly smaller total drag for flow over several solid
bodies than the sum of the drags of the flows over individual cylinders. First, the
shear layers originating from the front cylinder must be separated widely enough to
cover the rear cylinders. Secondly, the wake between the front cylinder and the rear
cylinder must be relatively stable so that the shear layers from the front cylinder
provide stable and significant negative volume drag elements to the rear cylinders.
Thirdly, there is an important shielding effect so that the wake behind the rear
cylinder has a relatively weak contribution to the drag of the front cylinder.

Three and four cylinders

There are many possibilities for arranging three circular cylinders in the same flow
environment. According to the guidelines for flow over two circular cylinders, we
consider one larger front cylinder and two smaller in-tandem cylinders a distance
behind. Figure 3 shows the various force components of the drag exerted on the three
cylinders. In particular, the total drag Cp is decomposed into the part exerted on
the front cylinder Cp(1) and the part exerted on the two rear cylinders Cp(2, 3).
Cp(2, 3) is about three times smaller than Cp(1). The average total drag coefficient
for the three-cylinder system is 1.4, which is not so much less than the time-averaged
drag coefficient 1.52 for flow over one single circular cylinder. Figure 4 shows the
vorticity distribution as well as the volume drag elements with respect to the front
cylinder as well as the two rear cylinders at t =36. The most significant difference
from the two-circular cylinder system is that the wake behind the front cylinder is less
symmetric and allowed to shed vortices to some extent. In particular, the recirculation
zone is unstable, thus reducing its contribution to drag reduction for the front cylinder.
This also reduces somewhat the stability of the shear layers from the front cylinder
in providing significant negative volume drag elements to the two rear cylinders.

There are two advantages in adding a fourth cylinder behind the two smaller
cylinders. One is to stabilize the wake region between the front cylinder and the two
middle cylinders so that the shear layers from the front cylinder are a more stable
provider of negative drag elements for the two middle cylinders. The other is to
delay the vortex shedding spatially (from directly behind the two middle cylinders to
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FIGURE 4. Flow field for the three-cylinder system at r =36, (a) vorticity contours, (b) volume
drag elements for S1, (¢) volume drag elements for S2 4+ S3.
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FIGURE 5. Various drag components for flow over four circular cylinders with a larger one in
the front and three smaller cylinders in the rear.

behind the fourth) and the shielding effect reduces the influence from vortex shedding
on the two middle cylinders. Figure 5 presents the various drag components for the
four-cylinder system which shows that this is indeed the case with the drag on the
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FiGURE 6. Flow field for the four-cylinder system at t =72, (a) vorticity contours, (b) volume
drag elements for S1, (¢) volume drag elements for S2+4 S3 and (d) volume drag elements for
S4.

two middle cylinders Cp(2, 3) further reduced (compared to the three-cylinder system)
while the fourth cylinder experiences a drag Cp(4) oscillating mildly with mean zero.
The mutual interactions between the four cylinders are more complicated. Let us
sample the time instant ¢t =72. Figure 6 shows the vorticity distribution as well as
the volume drag elements with respect to the front cylinder, the two middle cylinders
and the rear cylinder. It is observed that a very stable vorticity pattern is formed in
the region from the front through the rear cylinders, while vortex shedding occurs
in the wake behind the rear cylinder. The shielding effects are evident: the wake
behind the rear cylinder has little effect on the front cylinder, and the wake right
behind the front cylinder has little effect on the rear cylinder. The shear layers
originating from the front cylinder and the two middle cylinders are sources of drag
reduction for the rear cylinder by providing negative drag elements. The two middle
cylinders receive negative drag elements from the shear layers originating from the
front cylinder, and suffer from positive drag elements from their own shear layers,
but little from the shedding wake behind the rear cylinder. The mutual interactions
explain why the two middle cylinders are subject to very small drag, and the rear
cylinder has oscillatory drag due to vortex shedding. Consequently, the four-cylinder
system has experienced a total drag coefficient Cp = 1.1, which is even smaller than
the 1.4 of the three-cylinder system.

It would be interesting to see the relative importance of individual contributions
to the drag force. Tables 1 and 2 show the results for two- and four-cylinder systems,
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|Cpu(1)] |Cpy(2)]
Cp(l Cpy(1 Cp(2 Cpy(2 9 %
CoIGME (G IG@1 @1 %) %)
2 1.48 1.29 1.57 1.37 86.8 87.5
4 1.33 1.17 1.93 1.76 88 91.2
6 1.31 1.17 1.7 1.59 89.4 93.1
12 1.17 1.04 1.48 1.37 88.7 92.6
36 1.07 0.93 1.35 1.25 87.6 924
TaBLE 1. Volume drag ratios for two cylinders.
|Cpy (1) |Cpu(2,3)] |Cpy(4)
Cp(1)| |Cpy(1)] |Cp(2,3)] |Cps(2,3)| |ICp(4)] |Cpy(4 % 9 9
£ 1Co M Con (D] 1Co(2 3 1Cor (2, I ICo) ICo ] 1251 1 3y ) T (%)
1.5 183  1.62 1.53 1.29 095 0.76 88.1 84.2 80.5
5 169 1.52 1.39 1.24 0.61 0.47 90.1 89 76.6
14 142 127 1.13 1.01 082 07 89.9 89.5 84.6
26 1.56 141 1.32 1.18 092  0.78 89.8 89 84.8
72 149 135 1.19 1.07 0.6 0.49 90.5 90.1 82.2

TABLE 2. Volume drag ratios for four cylinders.

from which we observed that the Cp, for individual cylinders forms a large fraction
of the total drag (more than 80 % or even 90 %). This provides a good basis for using
the volume integrals as a diagnostic tool for analysing forces. For the present cylinder
arrangements, the total lift is relatively smaller than the total drag, and oscillates
about the mean zero. The oscillations come mainly from the unsymmetric wake force
element distributions behind the rear cylinder.

5. Concluding remarks

In this study, we have presented a force decomposition for N bodies to analyse
the force contributions to any sub-collection of these bodies by individual fluid
elements (or flow structures). The usefulness of the decomposition was illustrated for
flow about several circular cylinders. In particular, the present investigation yields
three guidelines that are important for achieving significantly smaller total drag for
flow over several circular cylinders than the sum of the drags of flow over individual
cylinders. In principle, the guidelines for analysing hydrodynamic/aerodynamic forces
can be applied to any flow systems supported by vortex forces such as bird flight
and fish swimming. The viewpoint and method of analysis can be applied to extend
our previous force theory for viscous compressible flow about single bodies to many
bodies.

The work is supported in part by the National Science Council of the Republic of
China under the Contract No. NSC94-2212-E-002-047 and NSC 94-2111-M-002-016.
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